terça-feira, 25 de novembro de 2008

Como funcionam os motores elétricos

Introdução

Motores elétricos estão por toda parte! Em sua casa, praticamente tudo que se move devido à eletricidade usa um motor elétrico CA (corrente alternada) ou CC (corrente contínua).

Entender como funciona um motor elétrico ajuda a aprender muito sobre ímãs, eletroímãs e eletricidade em geral. Este artigo mostra como os motores elétricos funcionam.

Por dentro de um motor de corrente contínua

Vamos começar examinando o esquema geral de um simples motor elétrico CC de dois pólos. Um motor simples tem seis partes, conforme mostrado no esquema abaixo:

  • armadura ou rotor
  • comutador
  • escovas
  • eixo
  • ímã de campo
  • fonte de alimentação CC de qualquer tipo


Peças de um motor elétrico

Um motor elétrico funciona basicamente devido a ímãs e magnetismo: um motor usa ímãs para criar movimento. Se você já brincou com ímãs, conhece a lei fundamental de todos eles: pólos opostos se atraem e pólos iguais se repelem. Se você pegar duas barras de ímã com as extremidades marcadas "norte" e "sul", então a extremidade norte de um ímã atrairá a extremidade sul do outro. Por outro lado, a extremidade norte de um ímã repelirá a extremidade norte do outro (assim como a sul repelirá a sul). Dentro de um motor elétrico essas forças de atração e repulsão criam movimento de rotação.

No esquema acima, você pode ver dois ímãs no motor: a armadura (ou rotor) é um eletroímã, ao passo que o ímã de campo é um ímã permanente (o ímã de campo também pode ser um  eletroímã, mas na maioria dos motores pequenos isso não acontece, para economizar energia).

O motor elétrico de um brinquedo

O motor apresentado aqui é um motor elétrico simples, normalmente usado em brinquedos:

Como você pode observar, este é um motor pequeno, com diâmetro pouco maior do que uma moeda de 50 centavos. Do lado de fora estão a carcaça de aço que compõe o corpo do motor, um eixo, uma tampa de náilon e dois fios para ligar à pilha. Se você conectar os fios do motor a uma pilha de lanterna, o eixo gira. Se você inverter os fios, ele gira na direção oposta. A seguir estão duas outras vistas do mesmo motor. Observe as duas fendas na lateral da carcaça de aço na segunda foto - a finalidade delas ficará evidente na seqüência do texto.

A tampa de náilon é mantida no lugar por duas lingüetas que fazem parte da carcaça de aço. Pressionando as lingüetas para baixo é possível liberar a tampa e removê-la. Dentro das tampas estão as escovas do motor. Essas escovas transferem energia da bateria para o comutador enquanto o motor gira:

Outras peças de motores elétricos

O eixo sustenta a armadura e o comutador. A armadura é um conjunto de eletroímãs (neste caso, três). A armadura neste motor é um conjunto de finas placas de metal unidas, com fios de cobre enrolados em volta de cada um dos três pólos da armadura. As duas pontas de cada fio (um fio para cada pólo) são soldadas em um terminal e então cada um dos três terminais é ligado a uma das placas do comutador. As figuras abaixo facilitam a visão da armadura dos terminais e do comutador:

A peça final de qualquer motor elétrico CC é o ímã de campo. O ímã de campo neste motor é formado pela própria carcaça, mais os dois ímãs permanentes curvos:

Uma extremidade de cada ímã fica encostada na fenda da carcaça, e o clipe de retenção pressiona as outras extremidades de ambos os ímãs .

Eletroímãs e motores

Para entender como um motor elétrico funciona é importante entender como o eletroímã funciona. (Como funcionam os eletroímãs explica mais detalhes).

Um eletroímã é a base de um motor elétrico. Você pode entender como um motor funciona imaginando a seguinte situação. Digamos que você tenha criado um eletroímã simples enrolando 100 voltas de fio em um prego e conectando os terminais do fio a uma pilha. O prego se transforma em um ímã e tem um pólo norte e um pólo sul enquanto a bateria estiver conectada.

Agora digamos que você pegue seu eletroímã feito com prego, atravesse um eixo no meio do prego e o suspenda no meio de um ímã tipo ferradura, conforme mostrado na figura abaixo. Se você ligar uma bateria ao eletroímã de modo que o pólo norte apareça conforme mostrado, a lei básica do magnetismo diz a você o que acontecerá: o pólo norte do eletroímã será repelido pelo pólo norte do ímã tipo ferradura e atraído pelo pólo sul do ímã tipo ferradura. O pólo sul do eletroímã será repelido de maneira similar. O prego se moverá metade de uma volta e então parará na posição mostrada.


Eletroímã em um ímã tipo ferradura

Você pode ver que esse movimento de meia-volta é simplesmente devido à maneira como ímãs se atraem e repelem naturalmente. O importante para um motor elétrico é ir uma etapa adiante, de modo que, no momento em que esse movimento de meia-volta se completar, o campo do eletroímã tenha o sentido invertido. A inversão faz com que o eletroímã complete outra meia-volta de movimento. Para inverter o campo magnético basta mudar a direção do fluxo dos elétrons no fio (invertendo a corrente que vem da bateria). Se o campo do eletroímã for invertido precisamente no momento final da meia-volta de movimento, o motor elétrico girará livremente.

Armadura, comutador e escovas


Armadura

Veja a imagem da página anterior. A armadura ocupa o lugar do prego em um motor elétrico. A armadura é um eletroímã feito enrolando-se fio fino em volta de dois ou mais pólos de um núcleo de metal.

A armadura possui um eixo, e o comutador é conectado ao eixo. No diagrama à direita há três diferentes imagens da mesma armadura: frontal, lateral e na direção do eixo. Na imagem na direção do eixo, a bobina foi ocultada para deixar o comutador mais destacado. Você pode ver que o comutador é simplesmente um par de placas presas ao eixo. Essas placas fornecem duas conexões para a bobina do eletroímã.


Escovas e comutador

O trabalho de "inversão do campo elétrico" de um motor elétrico é feito por duas peças: o comutador e as escovas.

A figura à direita mostra como o comutador e as escovas trabalham em conjunto para fazer com que a corrente flua para o eletroímã e também para inverter o sentido em que os elétrons estão fluindo exatamente no momento correto. Os contatos do comutador são fixados ao eixo do eletroímã, de modo que eles giram junto com este. As escovas são somente duas peças de metal flexível ou grafite que fazem contato com o comutador.

Como interagem as partes do motor elétrico

Juntando todas essas peças, surge um motor elétrico:


Armadura

Nesta figura, a bobina da armadura foi ocultada de modo que fique mais fácil ver o comutador em ação. O importante a ser observado é que, à medida que a armadura passa pela posição horizontal, os pólos do eletroímã são invertidos. Devido à inversão, o pólo norte do eletroímã fica sempre acima do eixo, de modo que ele possa repelir o campo magnético do pólo norte do ímã de campo e atrair o do pólo sul do ímã campo.

Se você puder pegar um pequeno motor elétrico, verá que ele possui as mesmas peças descritas acima: dois pequenos ímãs permanentes, um comutador, duas escovas e um eletroímã feito enrolando-se fio ao redor de uma peça de metal. Entretanto, quase sempre o rotor terá três pólos em vez de dois, como explicado neste artigo. Há duas boas razões para que um motor tenha três pólos:

  • fazer com que o motor tenha uma melhor dinâmica. Em um motor de dois pólos, se o eletroímã estiver no ponto de equilíbrio, na horizontal perfeita entre os dois pólos do campo magnético, quando o motor der partida, a armadura pode travar. Isso nunca ocorre em um motor de três pólos.
  • a cada vez que o comutador atinge o ponto em que ele inverte o campo em um motor de dois pólos, o comutador coloca a bateria em curto-circuito (conecta diretamente os terminais positivo e negativo) durante um momento. Isso gasta energia e descarrega a bateria sem necessidade. Um motor de três pólos também resolve esse problema.

É possível ter qualquer número de pólos, dependendo do tamanho do motor e da aplicação específica para a qual será usado.

Motores em todos os lugares

Examine sua casa e descobrirá que ela está cheia de motores elétricos. Este é  uma experiência interessante: ande pela sua casa e conte todos os motores que encontrar. Começando pela cozinha, há motores:

  • no exaustor sobre o fogão e no forno de microondas
  • na batedeira
  • no abridor de latas
  • na geladeira - na realidade, dois ou três: um para o compressor, um no ventilador dentro da geladeira e também um no fabricador de cubos de gelo
  • no misturador  
  • provavelmente, até no relógio do forno
Na lavanderia, há um motor elétrico: Mesmo no banheiro, há um motor: O seu carro está cheio de motores elétricos: Além disso, há motores em todos os outros locais: Andando pela casa, contei mais de 50 motores elétricos localizados em todos os tipos de dispositivos. Tudo que se move usa um motor elétrico.

Como funciona uma bomba nuclear

Como funcionam as bombas nucleares
por Craig C. Freudenrich, Ph.D. - traduzido por HowStuffWorks Brasil

Introdução

Certamente você já leu livros de história informando sobre as bombas nucleares usadas na Segunda Guerra Mundial. E também deve ter assistido a filmes de ficção científica onde bombas nucleares foram lançadas ou detonadas (" Limite de Segurança", "Dr. Fantástico", "O Dia Seguinte", "O Testamento", "Sombras no Futuro" e "O Pacificador", apenas para citar alguns). Nos noticiários, enquanto muitos países têm negociado o desarmamento de seus arsenais de armas nucleares, outros têm procurado desenvolver programas de armas nucleares.

Sabe-se que esses artifícios possuem um poder imenso de destruição, mas como eles funcionam? Neste artigo, falaremos sobre a física que faz da bomba nuclear algo tão poderoso, como ela é projetada e o que acontece após a sua explosão.


Imagem cedida pela NARA
Teste de canhão atômico, 1953

As bombas nucleares utiliza-se das forças, fortes e fracas, que mantêm o núcleo do átomo unido, em especial os átomos com núcleos instáveis (veja Como funciona a radiação nuclear para mais detalhes). Há dois modos básicos de a energia nuclear ser liberada a partir de um átomo:

  • fissão nuclear: o núcleo de um átomo pode se fissionar em dois fragmentos menores contendo nêutrons. Este método geralmente envolve isótopos de urânio (urânio-235, urânio-233) ou plutônio-239;
  • fusão nuclear: a partir de dois átomos menores, normalmente hidrogênio ou isótopos de hidrogênio (deutério, trítio), é possível formar um átomo maior (hélio ou isótopos de hélio); de maneira análoga, o sol produz energia.

Your browser does not support JavaScript or it is disabled.
Your browser does not support JavaScript or it is disabled.

Em ambos os processos, fissão ou fusão, uma grande quantidade de energia calorífica e radiação será emitida.

Para construir uma bomba atômica é preciso:

  • uma fonte combustível físsil ou fusível;
  • um dispositivo de ativação;
  • um modo que faça que a maior parte do combustível entre em fissão ou fusão antes da explosão da bomba (ou o disparo da bomba irá fracassar).

As primeiras bombas nucleares usavam dispositivo de fissão, e as mais recentes bombas de fusão exigem ativação por meio de bomba de fissão. Serão abordados os seguintes tipos de projetos de dispositivos:

  • bombas de fissão (em geral);
  • bomba de fissão de ativação a partir de pistola (Little Boy), que foi detonada sobre Hiroshima, no Japão, em 1945;
  • bomba de fissão de ativação por meio de implosão (Fat Man), que foi detonada sobre Nagasaki, no Japão, em 1945;
  • bombas de fusão (em geral);
  • o projeto da bomba de fusão a hidrogênio de Teller-Ulam, que foi detonada como teste sobre a Ilha de Elugelap, em 1952.

A bomba de fissão utiliza um elemento como o urânio-235 para causar uma explosão nuclear. Se você leu Como funciona a radiação nuclear, então saberá qual o processo básico subjacente à degeneração e à fissão radioativas. O urânio-235 possui uma propriedade extra que o habilita tanto para geração de energia nuclear como para a geração de uma bomba nuclear. O U-235 é um dos poucos materiais que suportam a fissão induzida. Caso um nêutron livre adentre um núcleo de U-235, ele será absorvido imediatamente, tornando o núcleo instável e levando-o a fissurar.

Your browser does not support JavaScript or it is disabled.

A figura à direita mostra o núcleo do elemento urânio-235 com a proximidade de um nêutron. Tão logo o núcleo capture o nêutron, ele será fissurado em dois átomos menores e expelirá dois ou três novos nêutrons (o número de nêutrons ejetados dependerá de como o átomo U-235 foi fissurado). Os dois novos átomos emitirão uma radiação gama conforme eles se ajustam a seus novos estados (veja Como funciona a radiação nuclear). Há três aspectos sobre o processo de fissão que o tornam interessante:

  • a probabilidade de um átomo U-235 capturar um nêutron conforme este transita é muito grande. Em uma bomba operando devidamente, nêutrons ejetados da fissão poderão ocasionar outras fissões. Essa condição é conhecida como supercriticalidade;
  • o processo de captura e fissão de um nêutron acontece muito rapidamente, na ordem de picossegundos (um trilionésimo de segundo);
  • uma quantidade incrível de energia será liberada, na forma de calor e radiação gama, durante a explosão de um átomo. A energia liberada por uma única fissão acontece devido aos produtos de fissão e nêutrons, conjuntamente, pesarem menos do que o átomo original U-235.

A diferença no peso será convertida em energia a uma taxa regida pela equação e = mc2. No caso de 450 g (1 libra) de urânio altamente enriquecido, como se usa numa bomba nuclear, será igual a 1 milhão de galões de gasolina ou 3.785.412 litros. Ao considerar que 450 g de urânio ocupam menos volume que uma bola de beisebol e que 1 milhão de galões de gasolina enchem um cubo de 15,24 metros de aresta (15,24 metros é a altura de um prédio de cinco andares), pode-se ter uma idéia da quantidade de energia disponível em apenas um pouco de U-235.

Para ativar estas propriedades de U-235, uma amostra de urânio deverá estar enriquecida. O urânio para uso em armas é composto de pelo menos 90% de U-235.

Massa crítica
Em uma bomba de fissão, o combustível deverá ser separado das massas subcríticas, que não suportam fissão, de forma a prevenir a detonação prematura. Massa crítica é o mínimo de material fissurável exigido para garantir sustentação a uma reação de fissão nuclear. Essa separação torna possível a ocorrência de diversos problemas no projeto da bomba de fissão, que deverão ser solucionados:

  • as duas ou mais submassas críticas deverão ser agrupadas para dar origem a uma massa supercrítica, que fornecerá mais nêutrons do que o suficiente para proporcionar uma reação de fissão no momento da detonação;
  • nêutrons livres deverão ser introduzidos à massa supercrítica para dar início à fissão;
  • a maior parte do material fissurável deverá explodir previamente para impedir uma falha.

Para agrupar as massas subcríticas com a massa supercrítica, duas técnicas serão utilizadas:

  • ativação por meio de pistola
  • implosão

gerador de nêutrons. Esse gerador é uma pequena esfera de polônio-berílio, separados por uma lâmina dentro do combustível fissurável. Neste gerador:

  • A lâmina será rompida quando as massas subcríticas agruparem-se e o polônio emitir partículas alfa.
  • Essas partículas alfa colidirão com o berílio-9 para produzir berílio-8 e liberar nêutrons.
  • Os nêutrons darão início à fissão.

Finalmente, a reação de fissão será confinada dentro de um material denso, conhecido como refletor de reator nuclear, que é normalmente composto por urânio-238. O refletor de reator nuclear se aquece e se expande por meio da zona central da fissão. Essa expansão exerce uma pressão de volta ao refletor e desacelera a expansão da zona central. O refletor de reator nuclear também refletirá nêutrons de volta à zona central de fissão, aumentando a eficiência da reação.

Tipos de bombas

Bomba de fissão ativada por pistola
O modo mais simples de agrupar as massas subcríticas é produzindo uma pistola que dispare massa subcrítica dentro da outra. Uma esfera de U-235 é formada ao redor do gerador de nêutron e uma pequena bala de U-235 será removida. A bala será posicionada na extremidade de um tubo longo com explosivos na parte traseira, enquanto a esfera será posicionada na outra extremidade. Um sensor de medição de pressão barométrica determinará a altitude apropriada para detonação e ativará a seguinte seqüência de eventos:

  1. os explosivos serão detonados e darão propulsão à bala para fora do cano;
  2. a bala atingirá a esfera e o gerador, dando início à reação de fissão;
  3. a reação de fissão terá início;
  4. a bomba explodirá.

Your browser does not support JavaScript or it is disabled.

A Little Boy foi uma bomba desse tipo e possuía uma pressão de 14.5-kilotons (o equivalente a 14.500 toneladas de TNT) com eficiência de aproximadamente de 1.5%. Isto é, 1.5% do material foi fissurado antes que a explosão arrebatasse o material.

Bomba de fissão ativada por implosão
No começo do Projeto Manhattan (em inglês), programa secreto dos EUA para desenvolvimento da bomba atômica, cientistas que trabalhavam no projeto identificaram que comprimir as massas subcríticas conjuntamente em uma esfera através de implosão poderia ser uma forma viável de se produzir massa supercrítica. Houve vários problemas com relação à essa idéia, em especial acerca do modo de controle e direcionamento da freqüência da onda de choque de maneira uniforme ao longo da esfera. Entretanto, a equipe do Projeto Manhattan solucionou os problemas. O dispositivo de implosão consistia em uma esfera de urânio-235 (refletor de reator nuclear) e uma zona central de plutônio-239 envolvida por explosivos de alto alcance. Quando a bomba foi detonada, o resultado foi o seguinte:

  • os explosivos foram detonados, criando uma onda de choque;
  • a onda de choque comprimiu a zona central;
  • a reação por fissão teve início;
  • a bomba explodiu.

Your browser does not support JavaScript or it is disabled.

A Fat Man foi uma bomba desse tipo e possuía uma pressão de 23-kilotons com uma eficiência de aproximadamente 17%. Estas bombas explodiam em frações de segundo, geralmente 560 bilionésimos de segundo.

Bomba de ativação por implosão de projeto moderno
Em uma modificação recente do projeto de ativação por implosão, o resultado foi o seguinte:

  • os explosivos detonam criando uma onda de choque;
  • a onda de choque dá propulsão à agrupação das partículas em uma esfera;
  • as partículas de plutônio atingem uma pequena esfera de berílio-plutônio na região central;
  • a reação por fissão teve início;
  • a bomba explodiu.

Your browser does not support JavaScript or it is disabled.

Bombas de fusão
As bombas de fusão funcionaram, porém não foram muito eficientes. As bombas de fusão também são conhecidas bombas termonucleares, possuindo pressões de kiloton superiores e eficiências maiores dos que as bombas de fissão. Para projetar uma bomba de fusão, alguns problemas deverão ser solucionados:

  • deutério e trítio, combustíveis para fusão, são gases de difícil armazenamento;
  • o trítio possui um volume inferior e menor meia-vida, portanto o combustível na bomba deverá ser continuamente reabastecido;
  • tanto o deutério quanto o trítio deverão ser comprimidos a altas temperaturas para dar início à reação de fusão.
Em primeiro lugar, para se armazenar o deutério, o gás deverá ser quimicamente combinado ao lítio para produzir um composto de lítio-deutério em estado sólido. Para solucionar o problema de insuficiência de trítio, os desenvolvedores da bomba reconheceram que os nêutrons resultantes de uma reação de fissão poderiam produzir trítio a partir do lítio (lítio-6 adicionado a pressões de nêutrons de trítio e hélio-4; lítio-7 adicionado a pressões de nêutrons de trítio, hélio-4 e um nêutron). O que significa que tal trítio não necessitará ser armazenado na bomba. Finalmente, Stanislaw Ulam reconheceu que a maior parte da radiação emitida em uma reação de fissão foi de raios X, e que estes raios X poderiam fornecer as altas temperaturas e pressões necessárias para dar início à fusão. Dessa forma, ao se encapsular uma bomba de fissão em uma bomba de fusão, vários problemas poderão ser solucionados.

Projeto da bomba de fusão de Teller-Ulam
Para entender o projeto dessa bomba, imagine que dentro da carcaça de uma bomba haja uma bomba de fissão por meio de implosão e um cilindro contendo urânio-238 (refletor de reator nuclear). Dentro do refletor de reator nuclear está o deuterídeo de lítio (combustível) e um tirante oco de plutônio-239 no centro do cilindro. Mantendo separado o cilindro da bomba de implosão está uma blindagem de urânio-238 e uma espuma plástica que preenche os espaços remanescentes na carcaça da bomba. A detonação da bomba ocasionou a seguinte seqüência de eventos:

  1. a bomba de fissão implodiu, produzindo raios X;
  2. estes raios X aqueceram o interior da bomba e do refletor de reator nuclear; a blindagem preveniu uma detonação prematura do combustível;
  3. o calor fez com que o refletor de reator nuclear se expandisse e fosse incinerado, exercendo pressão interna contra o deuterídeo de lítio;
  4. o deuterídeo de lítio foi estilhaçado em pelo menos 30 partículas;
  5. as ondas de choque de compressão deram início à fissão no tirante de plutônio;
  6. o tirante de fissão liberou radiação, calor e nêutrons;
  7. os nêutrons penetraram o deuterídeo de lítio, combinados ao lítio produzindo assim, o trítio;
  8. a combinação de altas temperaturas e pressão foram suficientes para que as reações de trítio-deutério e deutério-deutério ocorressem, produzindo mais calor, radiação e nêutrons;
  9. os nêutrons das reações de fusão induziram uma fissão às partículas de urânio-238 do refletor de reator nuclear e de blindagem;
  10. a fissão das partículas do refletor de reator nuclear e de blindagem produziram ainda mais radiação e calor;
  11. a bomba explodiu.

Your browser does not support JavaScript or it is disabled.

Todos estes eventos aconteceram em aproximadamente 600 bilionésimos de segundo para os eventos de fusão. O resultado foi uma imensa explosão 700 vezes superior à explosão da Little Boy: ela alcançou uma pressão de 10.000 kilotons.

Conseqüências e riscos à saúde

A detonação de uma bomba nuclear sobre um alvo como uma cidade populosa provoca danos imensos. O grau dos danos dependerá da distância de onde o centro da bomba é detonado, chamado de hipocentro ou marco zero. Quanto mais próximo alguém estiver do hipocentro, maior será o grau de danos sérios. Os danos são causados por diversos aspectos:

  • uma onda de calor intenso de uma explosão;
  • pressão da onda de choque criada pela detonação;
  • radiação;
  • precipitação radioativa (nuvens de finas partículas de poeira radioativa e resíduos da bomba que voltam a cair no solo).
No local do hipocentro, tudo será imediatamente vaporizado devido à alta temperatura (até 500 milhões de graus Fahrenheit ou 300 milhões de graus Celsius). Fora do hipocentro, a maioria das ocorrências são causadas devido a queimaduras ocasionadas pelo calor, ferimentos devido a estilhaços aéreos dos edifícios derrubados pela onda de choque e exposição à alta radiação. Fora da área imediata da detonação, as ocorrências são causadas pelo calor, radiação e incêndios gerados pela onda de calor. A longo prazo, a precipitação radioativa ocorre sobre uma área mais ampla devido a espirais de vento antecedentes. As partículas de precipitação radioativa penetram o manancial d'água e são inaladas e ingeridas por pessoas a uma distância considerável do local de detonação da bomba.

Cientistas estudaram os sobreviventes dos bombardeios de Hiroshima e Nagasaki (em inglês/japonês) para compreender os efeitos de curto e longo prazo das explosões nucleares sobre a saúde humana. A radiação e a precipitação radioativa afetam as células responsáveis pela divisão ativa (cabelo, intestino, medula óssea, órgãos de reprodução). Algumas dos problemas de saúde incluem:

Estes problemas freqüentemente aumentam o risco de ocorrência de:
  • leucemia;
  • câncer;
  • infertilidade;
  • deficiências congênitas.

Cientistas e físicos ainda estão estudando os sobreviventes das bombas lançadas sobre o Japão e aguardam mais resultados.

Na década de 80, cientistas avaliaram os possíveis efeitos de uma guerra nuclear, isto é, bombas nucleares explodindo em diversos locais do planeta, e propuseram a teoria de que o "inverno nuclear" pudesse ocorrer. Em um cenário de inverno nuclear, as explosões de muitas bombas levantaria muitas nuvens de poeira e material radioativo, que teriam uma rápida penetração na atmosfera terrestre. Estas nuvens poderiam bloquear a luz solar. O nível baixo de luz solar poderia diminuir a temperatura do planeta e reduzir a fotossíntese realizada pelas plantas e bactérias. A redução da fotossíntese romperia a cadeia alimentar, causando a extinção em massa da vida (incluindo a vida humana). Este cenário é semelhante à hipótese de um asteróide proposta para explicar a extinção dos dinossauros. Os proponentes do cenário de inverno nuclear apontaram para a existência de nuvens de poeira e resíduos que viajaram muito além do planeta, após as erupções vulcânicas do Monte Santa Helena, nos Estados Unidos, e do Monte Pinatubo, nas Filipinas.

As armas nucleares possuem um incrível poder de destruição a longo prazo, que ultrapassaria em muito o alvo original. É por essa razão que os governos mundiais buscam uma tentativa de controlar a difusão da tecnologia de armamento nuclear e seus materiais, bem como a redução do arsenal de armas nucleares empregadas durante a Guerra Fria.